首页>演讲嘉宾> 郭柏灵更新时间:2015-11-21

北京应用物理与计算数学研究所研究员郭柏灵照片

郭柏灵简历

郭柏灵,福建省龙岩市人,1936年10月生,汉族,中共党员,1958年毕业于复旦大学数学系。计算数学专家。历任助教、助理研究员、副研究员、研究室主任。现任北京应用物理与计算数学研究所研究员、博士生导师,国家自然科学基金会数学专家组评委。2001年11月当选中国科学院数学与物理学部院士。 在非线性发展方程的研究中,郭院士和周敏麟一起系统地建立了一维、多维问题的数学理论,特别是1986年证明了多维LL方程广义解的存在性,比国外1992年的类似结果早了六年。1991年又建立了一维LL方程整体光滑解的存在性和唯一性,从而解决了这一多年来悬而未决的唯一性问题。1993年郭院士发现并建立了LL方程和调和映照之间的密切联系,为调和映照找到了一个新的实际物理模型,且在二维无边Ricmann流形上证明了存在唯一整体解,除了有限个点外是正则的。1998年对于Landau-Lifshitz方程的初边值问题,郭院士等克服了很大的困难,得到了几乎光滑解的存在唯一性。1996年郭院士研究了广义Kadomtsev-Petviashvili(KP)方程和二维BO方程。所得到的KP方程的结果大改善了1993年J.C. Saut的有关结果。且有关二维BO方程的结果在国际上也是最新的。1995年郭院士研究了无界域上线性耗散Benjamin-Ono方程(BO),证明了H1(R)上强紧吸引子的存在性,提供了一个使弱紧吸引子成为强紧吸引子的重要方法。这种方法已颇受关注并广为利用。对五次非线性Ginzburg-Landau方程,郭院士利用空间离散化方法将无限维问题化为有限级问题,证明了该问题离散吸引子的存在性,并考虑5次Ginzburg-Landau方程的定态解、慢周期解、、异宿轨道等的结构。利用有限维动力系统的理论和方法,结合数值计算得到具体的分形维数(不超过4)和结构,以及走向混沌、湍流的具体过程和图像,这是一种寻求整体吸引子细微结构的新的探索和尝试,对其它方程也是富有启发的。1999年以来,郭院士集中于近可积耗散的和Hamilton无穷维动力系统的结构性研究,利用孤立子理论,奇异摄动理论,Fenichel纤维理论和无穷维Melnikov函数,对于具有小耗散的三次-五次非线性Schrodinger方程,证明了同宿轨道的不变性,并在有限维截断下证明了Smale马蹄的存在性,目前,正把这一方法应用于具小扰动的Hamilton系统的研究上。   以上这些工作得到国际同行们的好评,著名的无穷维动力系统专家法国的R. Teman教授称这些工作"有重大的国际影响","对无穷维动力系统理论有重要持久的贡献。"   先后获得了国家自然科学进步奖三等奖1项,部委级科技进步奖多项,发表论文200余篇,其中74篇被SCI收录,出版专著7部。

相关嘉宾

北京大学教授田刚照片

田刚
北京大学
教授

中国科学院数学与系统科学研究院院长郭雷照片

郭雷
中国科学院数学与系统科学研究院
院长

中国科学院系统科学研究所研究员李邦河照片

李邦河
中国科学院系统科学研究所
研究员

北京应用物理与计算数学研究所研究员郭柏灵照片

郭柏灵
北京应用物理与计算数学研究所
研究员

北京大学教授文兰照片

文兰
北京大学
教授

扫一扫 把嘉宾放进口袋里

嘉宾搜索

热门嘉宾

徐小平

徐小平 真格基金
创始人

傅哲宽

傅哲宽 启赋资本
董事长

陈向东

陈向东 跟谁学
CEO